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A simple comparative
experiment

1.1 Key concepts

1. Good experimental designs allow for precise estimation of one or more un-
known quantities of interest. An example of such a quantity, or parameter, is
the difference in the means of two treatments. One parameter estimate is more
precise than another if it has a smaller variance.

2. Balanced designs are sometimes optimal, but this is not always the case.

3. If two design problems have different characteristics, they generally require
the use of different designs.

4. The best way to allocate a new experimental test is at the treatment combination
with the highest prediction variance. This may seem counterintuitive but it is
an important principle.

5. The best allocation of experimental resources can depend on the relative cost
of runs at one treatment combination versus the cost of runs at a different
combination.

Is A different from B? Is A better than B? This chapter shows that doing the same
number of tests on A and on B in a simple comparative experiment, while seemingly
sensible, is not always the best thing to do. This chapter also defines what we mean
by the best or optimal test plan.
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2 OPTIMAL DESIGN OF EXPERIMENTS

1.2 The setup of a comparative experiment

Peter and Brad are drinking Belgian beer in the business lounge of Brussels Airport.
They have plenty of time as their flight to the United States is severely delayed due
to sudden heavy snowfall. Brad has just launched the idea of writing a textbook on
tailor-made design of experiments.

[Brad] I have been playing with the idea for quite a while. My feeling is that design
of experiments courses and textbooks overemphasize standard experimental plans
such as full factorial designs, regular fractional factorial designs, other orthogonal
designs, and central composite designs. More often than not, these designs are not
feasible due to all kinds of practical considerations. Also, there are many situations
where the standard designs are not the best choice.

[Peter] You don’t need to convince me. What would you do instead of the classical
approach?

[Brad] I would like to use a case-study approach. Every chapter could be built
around one realistic experimental design problem. A key feature of most of the
cases would be that none of the textbook designs yields satisfactory answers and
that a flexible approach to design the experiment is required. I would then show
that modern, computer-based experimental design techniques can handle real-world
problems better than standard designs.

[Peter] So, you would attempt to promote optimal experimental design as a
flexible approach that can solve any design of experiments problem.

[Brad] More or less.
[Peter] Do you think there is a market for that?
[Brad] I am convinced there is. It seems strange to me that, even in 2011, there

aren’t any books that show how to use optimal or computer-based experimental design
to solve realistic problems without too much mathematics. I’d try to focus on how
easy it is to generate those designs and on why they are often a better choice than
standard designs.

[Peter] Do you have case studies in mind already?
[Brad] The robustness experiment done at Lone Star Snack Foods would be a

good candidate. In that experiment, we had three quantitative experimental variables
and one categorical. That is a typical example where the textbooks do not give very
satisfying answers.

[Peter] Yes, that is an interesting case. Perhaps the pastry dough experiment
is a good candidate as well. That was a case where a response surface design
was run in blocks, and where it was not obvious how to use a central composite
design.

[Brad] Right. I am sure we can find several other interesting case studies when
we scan our list of recent consulting jobs.

[Peter] Certainly.
[Brad] Yesterday evening, I tried to come up with a good example for the intro-

ductory chapter of the book I have in mind.
[Peter] Did you find something interesting?
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[Brad] I think so. My idea is to start with a simple example. An experiment to
compare two population means. For example, to compare the average thickness of
cables produced on two different machines.

[Peter] So, you’d go back to the simplest possible comparative experiment?
[Brad] Yep. I’d do so because it is a case where virtually everybody has a clear

idea of what to do.
[Peter] Sure. The number of observations from the two machines should be equal.
[Brad] Right. But only if you assume that the variance of the thicknesses produced

by the two machines is the same. If the variances of the two machines are different,
then a 50–50 split of the total number of observations is no longer the best choice.

[Peter] That could do the job. Can you go into more detail about how you would
work that example?

[Brad] Sure.
Brad grabs a pen and starts scribbling key words and formulas on his napkin

while he lays out his intended approach.
[Brad] Here we go. We want to compare two means, say μ1 and μ2, and we have

an experimental budget that allows for, say, n = 12 observations, n1 observations
from machine 1 and n − n1 or n2 observations from machine 2. The sample of n1

observations from the first machine allows us to calculate a sample mean X1 for the
first machine, with variance σ 2/n1. In a similar fashion, we can calculate a sample
mean X2 from the n2 observations from the second machine. That second sample
mean has variance σ 2/n2.

[Peter] You’re assuming that the variance in thickness is σ 2 for both machines,
and that all the observations are statistically independent.

[Brad] Right. We are interested in comparing the two means, and we do so by
calculating the difference between the two sample means, X1 − X2. Obviously, we
want this estimate of the difference in means to be precise. So, we want its variance

var(X1 − X2) = σ 2

n1
+ σ 2

n2
= σ 2

( 1

n1
+ 1

n2

)

or its standard deviation

σX1−X2
=

√
σ 2

n1
+ σ 2

n2
= σ

√
1

n1
+ 1

n2

to be small.
[Peter] Didn’t you say you would avoid mathematics as much as possible?
[Brad] Yes, I did. But we will have to show a formula here and there anyway. We

can talk about this later. Stay with me for the time being.
Brad empties his Leffe, draws the waiter’s attention to order another, and grabs

his laptop.
[Brad] Now, we can enumerate all possible experiments and compute the variance

and standard deviation of X1 − X2 for each of them.
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Table 1.1 Variance of sample mean difference for different
sample sizes n1 and n2 for σ 2 = 1.

n1 n2 var(X1 − X2) σX1−X2
Efficiency (%)

1 11 1.091 1.044 30.6
2 10 0.600 0.775 55.6
3 9 0.444 0.667 75.0
4 8 0.375 0.612 88.9
5 7 0.343 0.586 97.2
6 6 0.333 0.577 100.0
7 5 0.343 0.586 97.2
8 4 0.375 0.612 88.9
9 3 0.444 0.667 75.0

10 2 0.600 0.775 55.6
11 1 1.091 1.044 30.6

Before the waiter replaces Brad’s empty glass with a full one, Brad has produced
Table 1.1. The table shows the 11 possible ways in which the n = 12 observations can
be divided over the two machines, and the resulting variances and standard deviations.

[Brad] Here we go. Note that I used a σ 2 value of one in my calculations. This
exercise shows that taking n1 and n2 equal to six is the best choice, because it results
in the smallest variance.

[Peter] That confirms traditional wisdom. It would be useful to point out that the
σ 2 value you use does not change the choice of the design or the relative performance
of the different design options.

[Brad] Right. If we change the value of σ 2, then the 11 variances will all be mul-
tiplied by the value of σ 2 and, so, their relative magnitudes will not be affected. Note
that you don’t lose much if you use a slightly unbalanced design. If one sample size is 5
and the other is 7, then the variance of our sample mean difference, X1 − X2, is only a
little bit larger than for the balanced design. In the last column of the table, I computed
the efficiency for the 11 designs. The design with sample sizes 5 and 7 has an effi-
ciency of 0.333/0.343 = 97.2%. So, to calculate that efficiency, I divided the variance
for the optimal design by the variance of the alternative.

[Peter] OK. I guess the next step is to convince the reader that the balanced design
is not always the best choice.

Brad takes a swig of his new Leffe, and starts scribbling on his napkin again.
[Brad] Indeed. What I would do is drop the assumption that both machines have

the same variance. If we denote the variances of machines 1 and 2 by σ 2
1 and σ 2

2 ,
respectively, then the variances of X1 and X2 become σ 2

1 /n1 and σ 2
2 /n2. The variance

of our sample mean difference X1 − X2 then is

var(X1 − X2) = σ 2
1

n1
+ σ 2

2

n2
,
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Table 1.2 Variance of sample mean difference for different
sample sizes n1 and n2 for σ 2

1 = 1 and σ 2
2 = 9.

n1 n2 var(X1 − X2) σX1−X2
Efficiency (%)

1 11 1.818 1.348 73.3
2 10 1.400 1.183 95.2
3 9 1.333 1.155 100.0
4 8 1.375 1.173 97.0
5 7 1.486 1.219 89.7
6 6 1.667 1.291 80.0
7 5 1.943 1.394 68.6
8 4 2.375 1.541 56.1
9 3 3.111 1.764 42.9

10 2 4.600 2.145 29.0
11 1 9.091 3.015 14.7

so that its standard deviation is

σX1−X2
=

√
σ 2

1

n1
+ σ 2

2

n2
.

[Peter] And now you will again enumerate the 11 design options?
[Brad] Yes, but first I need an a priori guess for the values of σ 2

1 and σ 2
2 . Let’s see

what happens if σ 2
2 is nine times σ 2

1 .
[Peter] Hm. A variance ratio of nine seems quite large.
[Brad] I know. I know. I just want to make sure that there is a noticeable effect

on the design.
Brad pulls his laptop a bit closer and modifies his original table so that the

thickness variances are σ 2
1 = 1 and σ 2

2 = 9. Soon, he produces Table 1.2.
[Brad] Here we are. This time, a design that requires three observations from

machine 1 and nine observations from machine 2 is the optimal choice. The balanced
design results in a variance of 1.667, which is 25% higher than the variance of 1.333
produced by the optimal design. The balanced design now is only 1.333/1.667 = 80%
efficient.

[Peter] That would be perfect if the variance ratio was really as large as nine.
What happens if you choose a less extreme value for σ 2

2 ? Can you set σ 2
2 to 2?

[Brad] Sure.
A few seconds later, Brad has produced Table 1.3.
[Peter] This is much less spectacular, but it is still true that the optimal design

is unbalanced. Note that the optimal design requires more observations from the
machine with the higher variance than from the machine with the lower variance.

[Brad] Right. The larger value for n2 compensates the large variance for machine
2 and ensures that the variance of X2 is not excessively large.
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Table 1.3 Variance of sample mean difference for different
sample sizes n1 and n2 for σ 2

1 = 1 and σ 2
2 = 2.

n1 n2 var(X1 − X2) σX1−X2
Efficiency (%)

1 11 1.182 1.087 41.1
2 10 0.700 0.837 69.4
3 9 0.556 0.745 87.4
4 8 0.500 0.707 97.1
5 7 0.486 0.697 100.0
6 6 0.500 0.707 97.1
7 5 0.543 0.737 89.5
8 4 0.625 0.791 77.7
9 3 0.778 0.882 62.4

10 2 1.100 1.049 44.2
11 1 2.091 1.446 23.2

[Peter, pointing to Table 1.3] Well, I agree that this is a nice illustration in that it
shows that balanced designs are not always optimal, but the balanced design is more
than 97% efficient in this case. So, you don’t lose much by using the balanced design
when the variance ratio is closer to 1.

Brad looks a bit crestfallen and takes a gulp of his beer while he thinks of a
comeback line.

[Peter] It would be great to have an example where the balanced design didn’t do so
well. Have you considered different costs for observations from the two populations?
In the case of thickness measurements, this makes no sense. But imagine that the two
means you are comparing correspond to two medical treatments. Or treatments with
two kinds of fertilizers. Suppose that an observation using the first treatment is more
expensive than an observation with the second treatment.

[Brad] Yes. That reminds me of Eric Schoen’s coffee cream experiment. He was
able to do twice as many runs per week with one setup than with another. And he
only had a fixed number of weeks to run his study. So, in terms of time, one run was
twice as expensive as another.

[Peter, pulling Brad’s laptop toward him] I remember that one. Let us see what
happens. Suppose that an observation from population 1, or an observation with
treatment 1, costs twice as much as an observation from population 2. To keep things
simple, let the costs be 2 and 1, and let the total budget be 24. Then, we have 11 ways
to spend the experimental budget I think. One extreme option takes one observation
for treatment 1 and 22 observations for treatment 2. The other extreme is to take
11 observations for treatment 1 and 2 observations for treatment 2. Each of these
extreme options uses up the entire budget of 24. And, obviously, there are a lot of
intermediate design options.

Peter starts modifying Brad’s table on the laptop, and a little while later, he
produces Table 1.4.
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Table 1.4 Variance of sample mean difference for different
designs when treatment 1 is twice as expensive as treatment
2 and the total cost is fixed.

n1 n2 var(X1 − X2) σX1−X2
Efficiency (%)

1 22 1.045 1.022 23.2
2 20 0.550 0.742 44.2
3 18 0.389 0.624 62.4
4 16 0.313 0.559 77.7
5 14 0.271 0.521 89.5
6 12 0.250 0.500 97.1
7 10 0.243 0.493 100.0
8 8 0.250 0.500 97.1
9 6 0.278 0.527 87.4

10 4 0.350 0.592 69.4
11 2 0.591 0.769 41.1

[Peter] Take a look at this.
[Brad] Interesting. Again, the optimal design is not balanced. Its total number of

observations is not even an even number.
[Peter, nodding] These results are not quite as dramatic as I would like. The

balanced design with eight observations for each treatment is still highly efficient.
Yet, this is another example where the balanced design is not the best choice.

[Brad] The question now is whether these examples would be a good start for the
book.

[Peter] The good thing about the examples is that they show two key issues. First,
the standard design is optimal for at least one scenario, namely, in the scenario where
the number of observations one can afford is even, the variances in the two populations
are identical and the cost of an observation is the same for both populations. Second,
the standard design is often no longer optimal as soon as one of the usual assumptions
is no longer valid.

[Brad] Surely, our readers will realize that it is unrealistic to assume that the
variances in two different populations are exactly the same.

[Peter] Most likely. But finding the optimal design when the variances are different
requires knowledge concerning the magnitude of σ 2

1 and σ 2
2 . I don’t see where that

knowledge might come from. It is clear that choosing the balanced design is a
reasonable choice in the absence of prior knowledge about σ 2

1 and σ 2
2 , as that balanced

design was at least 80% efficient in all of the cases we looked at.
[Brad] I can think of a case where you might reasonably expect different variances.

Suppose your study used two machines, and one was old and one was new. There,
you would certainly hope the new machine would produce less variable output. Still,
an experimenter usually knows more about the cost of every observation than about
its variance. Therefore, the example with the different costs for the two populations is
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possibly more convincing. If it is clear that observations for treatment 1 are twice as
expensive as observations for treatment 2, you have just shown that the experimenter
should drop the standard design, and use the unbalanced one instead. So, that sounds
like a good example for the opening chapter of our book.

[Peter, laughing] I see you have already lured me into this project.
[Brad] Here is a toast to our new project!
They clink their glasses, and turn their attention toward the menu.

1.3 Summary

Balanced designs for one experimental factor at two levels are optimal if all the
runs have the same cost, the observations are independent and the error variance is
constant. If the error variances are different for the two treatments, then the balanced
design is no longer best. If the two treatments have different costs, then, again, the
balanced design is no longer best.

A general principle is that the experimenter should allocate more runs to the
treatment combinations where the uncertainty is larger.


